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Abstract 

 
We propose a probabilistic fish growth model for smart aquaculture systems equipped with 
IoT sensors that monitor the ecological environment. As IoT sensors permeate into smart 
aquaculture systems, environmental data such as oxygen level and temperature are collected 
frequently and automatically. However, there still exists data on fish weight, tank allocation, 
and other factors that are collected less frequently and manually by human workers due to 
technological limitations. Unlike sensor data, human-collected data are hard to obtain and are 
prone to poor quality due to missing data and reading errors. In a situation where different 
types of data are mixed, it becomes challenging to develop an effective fish growth model. 
This study explores the unique characteristics of such a combined environmental and weight 
dataset. To address these characteristics, we develop a preprocessing method and a 
probabilistic fish growth model using mixed data sampling (MIDAS) and overlapping 
mixtures of Gaussian processes (OMGP). We modify the OMGP to be applicable to prediction 
by setting a proper prior distribution that utilizes the characteristic that the ratio of fish groups 
does not significantly change as they grow. We conduct a numerical study using the eel dataset 
collected from a real smart aquaculture system, which reveals the promising performance of 
our model. 
 
 
Keywords: Smart aquaculture, fish weight estimation, probabilistic modeling, multi-modal 
distribution, wireless sensor network 
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1. Introduction 

As reported by the 2022 edition of the State of World Fisheries and Aquaculture (SOFIA) 
[1], due to the growth in aquaculture, particularly in Asia, total fishery and aquaculture 
production reached an all-time high of 214 million tonnes in 2021. Moreover, aquaculture has 
experienced more remarkable growth over the past two years compared to capture fisheries, 
and this gap is expected to widen over the next decade. With this growth of the aquaculture 
industry, smart aquaculture also has undergone significant innovations in recent years with the 
upcoming IoT services [2, 3, 4, 5]. Smart aquaculture is essential for increasing fish farming 
efficiency because it maximizes fish growth within limited resources and reduces wasted 
resources unnecessarily by managing the fishery environment with automatically collected 
data. In smart aquaculture, wireless sensors and cameras collect data. Then the feeder makes 
decisions based on that data and operates remote machines for ecological environment 
management and feeding schedule planning. Progress in remote devices has replaced laborious 
tasks such as feeding [6], water pumps [7], etc. Advances in sensor technology make gathering 
data faster and creating an explosion of data [8]. This vast dataset enables the smart 
aquaculture system to make autonomous decisions. These days, many researchers try to 
implement machine learning methods for the automatic decision-making process and develop 
end-to-end automation models that eliminate the need for manual human interaction with the 
aquaculture system [9, 3]. 

Smart aquaculture data is categorized into two types: images and tabular datasets. Image 
datasets help monitor and automatically quantify the fish’s visual status (length, behavior, etc.). 
Image-based models analyze feeding status [10], classify fish behavior [11], detect abnormal 
behavior [12, 13], or track fish’s trajectory [14]. Image datasets are also used to estimate the 
weight of the fish [15, 16, 17]. However, a model based on an image can only return the weight 
of the fish in the picture, not the weight of all fish in a tank. Furthermore, the model has 
limitations in that they are designed for analysis, not for prediction. Tabular datasets mainly 
consist of ecological environment and feeding data, which can be controlled. To develop an 
effective fish growth model, it's crucial to integrate tabular data with fish weight data. However, 
the process of collecting weight data is conducted manually by human workers, making it not 
only costly but also prone to errors. Consequently, it remains challenging to collect weight 
data, whereas environmental data from IoT sensors are readily available. As a result, prior 
studies on smart aquaculture with tabular datasets have primarily focused on tasks like 
predicting specific environmental conditions, such as water quality [18] and dissolved oxygen 
levels [19], using only environmental data. For this study, we meticulously collect a weight 
dataset alongside an environmental dataset from a collaborating smart aquaculture system, 
which allows us to design a growth model based on this combined dataset. 

A growth model estimates the length or weight of fish over time. (These two variables, 
length and weight, can easily be converted into each other using a simple formula [20].) The 
majority of existing growth models are built upon the von Bertalanffy model [21, 22], which 
utilizes the age of the fish to predict its growth. However, being a non-probabilistic model, it 
can't be applied to a population of fish without assuming uniformity in growth parameters 
among all fish. In an attempt to yield probabilistic results, there have been studies estimating 
the distribution of this model's parameters [23, 24, 25, 26, 27] in a Bayesian sense, or those 
that used a weighted sum of certain statistical models [28, 29] with Bayesian weight 
parameters [30]. With the recent development of smart aquaculture systems, there has been a 
study on growth models that incorporate environmental data as input [31]. However, they 
relied on data from a test system and failed to capture the realistic attributes found in real-
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world smart aquaculture systems, such as sorting and grading, and the periodic absence of data. 
Additionally, they did not consider fish growth in a probabilistic way. Table 1 provides a 
summary of the existing fish growth models. 

 
Table 1. Summary of Existing Fish Growth Models 

 

Name Dataset Probabilistic References 
von Bertalanffy based model  length-at-age dataset X [21, 22] 

Other statistical models length-at-age dataset X [28, 29] 

Bayesian von Bertalanffy model length-at-age dataset O [23, 24, 25, 
26, 27, 30] 

ANN-based growth model environment features in test smart 
aquaculture system  X [31] 

Ours environment features in actual 
smart aquaculture system O  

 
This paper focuses mainly on exploring the unique characteristics of tabular datasets in 

smart aquaculture and developing a preprocessing step and fish growth model while 
considering the following data characteristics. 1) Mixed frequency: we predict fish weight with 
a temporal tabular dataset, where the fish weight is manually collected less frequently than 
automatically collected sensor data. 2) Multi-modality: fish grow at different rates even under 
the same environment [32]. So, a probabilistic approach is more appropriate than a point 
prediction method. Furthermore, we observe that our empirical distribution of the weight data 
exhibits multi-modality. 3) Fragmented timeseries: In smart aquaculture, sorting and grading 
refer to the process of separating fish by weight and redistributing them into their 
corresponding tank. This process is typically done to create more uniform groups of fish, 
which can help with feeding, disease management, and other aspects of fish farming. However, 
this process creates fragmented time series that are difficult to manage and analyze. 4) Missing 
data: because of sensor replacements and sorting operations, long periodic missing data 
frequently arises. Additionally, the data is fragmented along the time axis, and the number of 
data is insufficient. We mainly discuss the above characteristics in detail in Section 2.3 and 
demonstrate the importance of considering the characteristics from numerical analysis. 

The rest of this paper is organized as follows. Section 2 explains the data characteristics 
in smart aquaculture. Section 3 describes the model we propose. Section 4 conducts numerical 
experiments to show the performance of the proposed method. Section 5 makes a concluding 
remark with a discussion for future work. 

2. Dataset collected from smart aquaculture 

2.1 Notation 
Throughout this paper, we will use the following notation: boldfaced lowercase letters (x, y, 
z) denote vectors, boldfaced capital letters (X, Y, Z) denote matrices, and ordinary letters (b, 
n, L) denote scalars. Vectors are column vectors unless we mention explicitly that they are row 
vectors. The subscript below xi means the i-th element of x.  
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2.2 Data description  
We collected eel data from a smart aquaculture system during the period of 2021/07 to 2021/12. 
The data comprises sensor data, growth data, and feeding data observed from five tanks. Each 
tank contains tens of thousands of fish, which are not mixed before the grading and sorting 
period, and it is impossible to track which fish are moved from which tank during the grading 
and sorting process. Throughout the period, there are two sorting times, 08/08, and 10/31, in 
which all fish are taken out of the tank and redistributed according to the similar weight. The 
sensor data of each tank was collected in real time, and they include dissolved oxygen (DO), 
water temperature, pH, oxidation reduction potential (ORP), CO2, oxygen, and light. The 
feeding data includes variables such as the amount of food and water in the morning and 
afternoon, recorded daily. The growth data is composed of the weight of 20 randomly selected 
fish per tank observed every two weeks, the number of fish, and average fish weight per tank 
measured at the beginning of each sorting operation. This period takes two months on average, 
so we refer to this data collection cycle as two months. The detailed explanation of each 
attribute (variable) can be found in Table 2. 
 

Table 2. Description for smart aquaculture data. 
 

Data Attribute (unit) Interval 

sensor data   

dissolved oxygen, DO (mg/L) one-minute 
water temperature (◦C) one-minute 
pH one-minute 
oxidation reduction potential, ORP (mV) one-minute 
CO2 (mg/l) one-minute 
oxygen (L/m) one-minute 
light (mA) one-minute 

feeding data 

feed amount for a.m. one-day 
feed amount for p.m. one-day 
water amount for a.m. one-day 
water amount for p.m. one-day 

growth data 
fish weight (g) two-weeks 
average fish weight per tank (g) two-months 
number of fish per tank two-months 

2.3 Characteristics of smart aquaculture and the datasets 
This section examines the characteristics of smart aquaculture dataset and provides brief 
description of how to deal with each characteristic. The first characteristic is that data is a 
mixture of data from IoT sensors and manual measurements. In traditional fish sampling 
methods, researchers manually collect fish samples from the water, which is labor-intensive 
and time-consuming and affects the fish population. In contrast, in smart aquaculture, IoT 
sensors are used to observe various ecological environmental factors at a high frequency, 
making data collection more cost-effective. However, the growth data such as the weight of 
the fish is still measured manually, resulting in mixed frequencies in the data set and a small 
number of weight data observations. Moreover, the difference in data collection methods can 
lead to overfitting in weight prediction models. While the amount of data collected by IoT 
sensors is large, the number of fish weight datasets is small, so the process of matching the 
frequency of the data results in a small number of data points. In addition, for the weight 
prediction problem, the sensor data and feeding data are set as input data and the weight data 
is set as output data. If the output data uses all the sensor data and feeding data of the observed 
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interval as input data, it becomes enormously high-dimensional data. The small number of 
data points with high-dimensionality can cause overfitting. Coincidentally, underwater sensors 
are susceptible to malfunctioning and require periodic replacements, leading to potential 
missing data. We should preprocess these periodic missing data. 

The second characteristic is related to the growth process of the fish. Despite having the 
same ecological environment and feeding process, the growth of fish can vary greatly. This 
variability in growth can cause significant difficulties when trying to predict the growth of fish 
using point prediction methods such as deep neural networks or tree boosting methods. To 
solve this problem, researchers can create a model that returns a probability distribution. Fig. 
1 depicts a histogram and exponential kernel density estimation plot of fish weight for each 
date in tank 1. As illustrated in Fig. 1, the distribution of fish weight changes over time from 
a unimodal to a multimodal distribution. To consider this phenomenon. we assume that the 
weight distributions of fish over time are a mixture of several stochastic processes. The validity 
of this assumption will be tested in the experimental section. The histograms for other tanks 
are included in the appendix. 
 

  
Fig. 1. Histogram and kernel density plot of fish weight of tank 1 for 2021/08 – 2021/10. 

 
The last characteristic is the periodic grading and sorting of fish. As mentioned earlier, 

fish grow differently over time, so they need to be graded and sorted regularly [32]. Fig. 2 
illustrates the grading and sorting step of smart aquaculture when the number of tanks is 2. 
Periodically, the fish farmer grades and sorts the fish that have grown in each tank and places 
them back into new tanks. Grading and sorting have the advantage of preventing feed 
monopoly of mature fish and providing efficient feeding according to the size of the fish. 
However, this characteristic can lead to fragmented data along the time axis and missing data 
during sorting time. In addition, periodic replacement of underwater sensors can exacerbate 
the problem of missing data, making it difficult to accurately predict fish growth and behavior. 
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Fig. 2. Grading and sorting process in aquaculture 

 
In summary, mixed sampling method (IoT sensor data and manual measurements) results 

in mixed frequency, lack of data, high-dimensionality and data missing. The growth process 
of fish demonstrates the need for a probabilistic model that returns a multimodal distribution, 
and grading and sorting produce a fragmented time series and missing data. The methods for 
addressing those difficulties through preprocessing and modeling are discussed in more detail 
in the following section. 

3. Probabilistic modeling for fish growth 

3.1 Preprocessing 
This section describes the preprocessing step that converts daily feeding data, 𝐗𝐗d, and sensor 
data, 𝐗𝐗s, collected in minutes into an input dataset, 𝐗𝐗. Fig. 3 illustrates our algorithm. 

Firstly, we remove missing data or outlier in sensor data. Missing data and outlier came 
from sensor replacement, sensor failure, grading, and sorting. Sensor failure returns a nan 
value which indicates that the data is missing. We look for instances where a sensor was 
outputting an outlier due to failure or replacement and remove data corresponding to the date 
of output. Removing hourly data is based on the expert opinion; since all the causative 
processes take a few hours, we detected an outlier in minutes and then removed the sensor data 
from hours that included the outlier or missing data. We follow the Tukey's fences rule, which 
determines that the data is an outlier if it is greater than Q3 + 2(Q3-Q1) or less than Q1 – 2(Q3-
Q1) where Q1 and Q3 are the lower and upper quartiles, respectively. Fig. 4 depicts the pH 
sensor data collected over time. The detected outlier is highlighted in red in Fig. 4 (a), while 
the data observed on the same hour as the detected outlier is colored in red in Fig. 4 (b). Due 
to the presence of long-term missing data in addition to missing data caused by outliers, 
removing the missing data would be more appropriate for ensuring the accuracy of the model, 
rather than attempting to impute the missing data 
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Fig. 3. Algorithm diagram of our model. 
 

Subsequently, the sensor dataset per minute is transformed into daily sensor data 
collected from t − (L − 1) to t day, and then we get the L daily sensor and feeding data. As 
mentioned above, sensor data contains hours of missing data which can result in an erroneous 
model due to the low accuracy of imputation. To address this issue, we solve missing data and 
frequency transformation problems by calculating the statistics, obtaining mean and variance 
for each day and treating these values as daily sensor data. Even if there are some missing 
values, we can still calculate the statistics, and the frequency is successfully changed from 
minutes to days.  
 

 
Fig. 4. Removing outliers from the data. 



2266                                                          Kim et al.: Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems 

 
Finally, we transform L daily feeding and sensor data into one row data to match the 

frequency with our growth data. This problem is a mixed-frequency problem. We employ two 
methods, mixed data sampling (MIDAS) [34] and the uniform manifold approximation and 
projection (UMAP) [35], to solve this problem. MIDAS is the most popular and successful 
method to deal with these mixed-frequency data. Since MIDAS has a small number of 
parameters, it performs well in our situation where data is scarce, unlike recurrent neural 
network that typically have a large number of parameters. MIDAS consists of time-varying 
parameters and a regression model with those parameters. We use simple MIDAS regression 
formula with exponential Almon lag as follows: 
 

yt = β0 + β1B�L, (θ1,θ2)�𝐚𝐚t + ϵt 
B�L, (θ1,θ2)� = ∑ b�l, (θ1,θ2)�DlL

l=1                                                (1) 

b�l, (θ1, θ2)� =
eθ1l+θ2l2

∑ eθ1l+θ2l2L
l=1

 , 

 
where ϵt  denotes a Gaussian noise,  𝐚𝐚t = (𝐬𝐬t,𝐝𝐝t) ∈ 𝐗𝐗s × 𝐗𝐗d  denotes daily input data 
consisting of daily sensor and feeding data at day t, Dk is a lag operator which means that 
Dk( 𝐚𝐚t) = 𝐚𝐚t−k, 𝛉𝛉 = (θ1,θ2). We constrain θ2 to be negative because the data has less impact 
over time. We treat B�L, (θ1,θ2)�𝐚𝐚t as input data, 𝐱𝐱 ∈ 𝐗𝐗 for next step, probabilistic modeling. 
Even if this restricted functional space of MIDAS regression does not contain the optimal 
function, it helps to improve the model when the data is not too large [36]. This is because 
MIDAS is a good representative of a structure that loses influence over time with a small 
number of parameters. However, estimating MIDAS and the probabilistic model 
simultaneously requires training numerous parameters, which can be computationally 
expensive. Therefore, we optimize those parameters separately. Additionally, to confirm the 
suitability of MIDAS, we also implement another preprocessing method using UMAP as a 
baseline. We concatenate 𝐿𝐿 daily data into one-row data and use UMAP to get the identical 
dimension with MIDAS. We compare two preprocessing strategies in Section 4. 

3.2 Design output with a fragmented dataset 
We mitigate a data shortage problem caused by the fragmented time series data. Since current 
fish weight is highly correlated to the past fish weight, it is important to add information for 
the history of fish weight into the input data. There are two types of collected fish weight data, 
1) average fish weight measured every two months, 2) twenty fish weight collected by manual 
sampling every two weeks. If we utilize fish weight sampled two weeks ago, the time series 
data is not available at the initial stage, requiring the removal of initial data. Since our time 
series is fragmented—that is, the number of fragmented time series is not just one—we have 
to remove more data, which makes the insufficient data even more scarce. To preserve the 
number of data, we set the difference between the average fish weight measured every two 
months and the current fish weight as the output. The weight observed every two months is 
measured early in the fragmented time series, meaning it was measured immediately after the 
sorting process. Therefore, the difference represents the growth of the fish after the sorting 
process. We add the time taken from the initial point of fragmented timeseries to the data as a 
new variable. 
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3.3 Probabilistic modeling for multimodal dataset 
We develop a multimodal probability model, specifically a multi-trajectory prediction model. 
These models can account for variability in growth by modeling multiple potential growth 
trajectories, which can lead to more accurate predictions. Aquaculture tanks group fish by their 
graded weight. This results in a unimodal weight distribution at first, but it changes to a 
multimodal one as fish grow at different rates over time. We point out that these aspects are 
seriously similar to the data association problem, modeling a mixture of multiple (continuous) 
stochastic processes. Consequently, we choose to implement overlapping mixture of Gaussian 
process (OMGP) [37], which is a Gaussian process (GP) [38] for data association problem. 

In OMGP, the relationship between output yi ∈ 𝐲𝐲 , and input 𝐱𝐱i ∈ 𝐗𝐗 (i = 1, … , n)  is 
represented by the mixture process F where n denote the size of data (the number of data 
points). We assume Gaussian noise ϵ ~N(0,σ2) on output 𝐲𝐲. The mixture process F consists 
of the K latent Gaussian process �fj�j=1

K  which help to model the K multi-modal distribution. 

The GP prior is expressed as fj ∼ GP�𝟎𝟎, kj� with zero mean 0 and kernel function kj. OMGP 
assumes that each data (𝐱𝐱i, yi) is generated from one of the latent functions. Let 𝐙𝐙 denote 
indicator matrix where 𝑖𝑖th row, j-th column entries, zij means that i-th data is generated from 
j-th latent Gaussian process. With these assumptions, the model's probability density functions 
are as follows: 

 

P(𝐲𝐲|F,𝐗𝐗,𝐙𝐙) = ��N(yi|fi(𝐱𝐱𝐢𝐢),σ2)zij   
K

j=1

N

i=1

 

P(𝐙𝐙) = ∏ ∏ �Φij�
zij  ,K

j=1
N
i=1 ∑ Φij = 1K

j=1                                        (2) 

P(F|𝐗𝐗) = �N �fj(𝐗𝐗)�0, kj(𝐗𝐗,𝐗𝐗)�
K

j=1

, 

 
 

where N(∗ |μ,σ2) denotes the probability density function of a normal distribution with mean 
μ and variance σ2 with input ∗ ,and Φij is the probability in which ith data is generated from 
fj. Then the predictive distribution function,  f∗, corresponding to a new input 𝐱𝐱∗ is expressed 
as follows: 
 
 

P(f∗|𝐱𝐱∗,𝐗𝐗, 𝐲𝐲) ≈� Φ∗jN(f∗|μ∗
j  σ∗

j 2)
K

j=1
 

μ∗
j = kj(𝐱𝐱∗,𝐗𝐗)�kj(𝐗𝐗,𝐗𝐗) + 𝐃𝐃j−𝟏𝟏�

−1𝐲𝐲                                              (3) 
σ∗
j = σ2 + kj(𝐱𝐱∗, 𝐱𝐱∗) 

−kj(𝐱𝐱∗,𝐗𝐗)�kj(𝐗𝐗,𝐗𝐗) + 𝐃𝐃j−𝟏𝟏�
−1kj(𝐗𝐗,𝐱𝐱∗), 

 
where 𝐃𝐃j is a n × n diagonal matrix with i-th diagonal entry  Φij

σ2
.  

The biggest hurdle of OMGP prediction is how to set the proper prior Φ∗j for new input 
𝐱𝐱∗. Each trajectory of fish weight represents a distinct group of fish, and this group does not 
change significantly if sufficient time has passed since the sorting process. Therefore, our 
model approximates prior Φ∗j as the mean of Φij over the nearby time points as follows: 
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Φ∗j =

∑ Φiji∈N(x∗)

||N(x∗)||
,                                                                        (4)  

 
where N(x∗) denotes the dataset observed in a period close to x∗  and ||C(x∗)|| means the 
number of elements of N(x∗). For the tractable computation of the posterior distribution, 
P(𝐙𝐙, F(𝐗𝐗)|𝐗𝐗, 𝐲𝐲), we adapt an improved variational bound for OMGP [37]. In the following 
sections, we use “OMGP” to denote the conventional model with uniform settings and 
“OMGP-SA” to denote our approach for smart aquaculture. We empirically determine the 
number of mixtures K according to the result of experiments. The setting of other model 
parameters will be explained in Section 4. 

4. Experiments 

4.1 Experimental settings 

For our experiment, we implement two preprocessing methods: MIDAS and UMAP 
embedding. Additionally, we use four probabilistic models: GP, Mixture Density Network 
(MDN) [39], OMGP, and OMGP-SA. Our OMGP-SA is an extension of OMGP designed to 
handle multi-modal distribution and data association problems, with an appropriate prior for 
Φ∗j. GP serves as a basic probabilistic model, while MDN addresses multi-modal distribution, 
and OMGP tackles the data association problem. Notably, GP can be viewed as an MLP with 
infinite units in the hidden layer [40], and MDN is considered a special case of MLP. The 
features of each model are represented in Table 3.  
 

Table 3.  Feature of each implemented models 
 

 Probabilistic 
modeling 

Multi-modal 
distribution  

Data association 
problem 

Proper prior for 𝚽𝚽∗𝐣𝐣 

GP O X X - 
MDN O O X - 
OMGP O O O X 
OMGP-SA (Ours) O O O O 

 
Table 3 denotes instances where each model handles a specific feature with an "O", cases 
where it does not with an "X", and situations where the feature is not applicable with a "-". 

We implement GP, OMGP, and OMGP-SA on Python with GPy package [41], and MDN 
with PyTorch package [42]. Each method trains with input data from two different embedding 
techniques, MIDAS and UMAP. In the models based on GP, we set prior mean and covariance 
to be zero and radial basis function (RBF) kernel, and the prior distribution P(Z) to be the 
Dirichlet distribution. We apply the same prior to GP. OMGP uses the L-BFGS-B optimizer 
(scipy implementation [43]), while GP and MDN use the Adam optimizer. The learning rate 
and number of iterations are 0.01 and 1000, respectively. Dataset is split into training and test 
datasets according to date. To evaluate the performance of our model, we designate the data 
observed on 2021-12-13 as our test set, while using the remaining data as our training set. To 
select the dataset observed in a period close to x∗ , we consider N(x∗) as the set of data 
observed on 2021-11-29 and 2021-12-27. 

For quantitative analysis, we adopt two evaluation metrics: mean squared of error (MSE) 
and mean standardized log-likelihood (MSLL). To obtain MSE, we must have at least one 
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prediction value for each input. Since our model is probabilistic, we choose the mean as a 
representative value for each prediction. Also, when using multiple mixture elements (such as 
MDN or OMGP) for each data point, we calculate a weighted sum of the density values and 
MSE values using the mean of each mixture element. We assign weights to each mixture 
element based on the probabilities that the data point belongs to each mixture element. MSLL 
is also calculated in a similar way, and the formula is given as follows: 
 

SE(𝐲𝐲,𝐲𝐲′) = (𝐲𝐲 − 𝐲𝐲′)T(𝐲𝐲 − 𝐲𝐲′), 

MSE(𝐲𝐲∗, f∗) =

⎩
⎪
⎨

⎪
⎧

1
n

SE(𝐲𝐲∗,𝛍𝛍∗)                                                                if f is GP

1
n
�Φ∗jSE �𝐲𝐲∗,𝛍𝛍∗

j �
K

j=1

              if f consists of K mixtures,
 

SLL(y,σ, μ) = 1
2

log(2πσ2) + (y−μ)2

2σ2
,                                                      (5) 

MSLL(𝐲𝐲∗, f∗) =

⎩
⎪
⎨

⎪
⎧1

n
� SLL(y∗i,σ∗i,μ∗i)
n

i=1

                                                                if f is GP

1
n
��Φ∗jSLL �y∗i,σ∗i

j ,μ∗i
j �

n

i=1

K

j=1

              if f consists of K mixtures,

 

 
where 𝐲𝐲∗ is the fish weight, corresponding to a new input x∗. MSLL is an evaluation metric 
from a probabilistic view [38], so this metric is more suitable for assessing the probabilistic 
model than MSE.  Indeed, the values of MSLL and MSE do not always align. Therefore, when 
we make comparisons between implemented probabilistic models, we say that the model with 
the better MSLL value outperforms unless otherwise noted. A lower score indicates a better 
fit of our model to the dataset in both metrics. 

4.2 Experiment results 

This section finds a suitable preprocessing method and model for our dataset. Table 4 shows 
the quantitative comparison between our model and others. We highlight the cells that 
correspond to our model in yellow in the table. In each cell of Table 4, the first and second 
rows denote the MSLL and MSE values, respectively. The cells with the best MSLL value and 
the second best are highlighted in red and blue, respectively. From this table, we firstly see 
that all models trained with the MIDAS embedded data show better metric values than the 
UMAP averagely. Using MIDAS as the embedding method, GP achieves a better MSE value 
by 395.154 and a better MSLL value by 0.01425 than when using UMAP. We also compare 
the average per-expert values using MIDAS embedding with those using UMAP for MDN, 
OMGP, and OMGP-SA models, and find that MIDAS achieved better MSE values of 
3143.05125, 68.37475, and 155.4 and better MSLL values of 0.04933, 0.09713, and 0.13381 
than UMAP, respectively. The dominance of MIDAS is likely due to the fact that UMAP is 
generalized for all embedding situations, while MIDAS is specialized for mixed frequency 
data. UMAP should find the relationship between the same sensor values measured on 
different dates by itself, whereas MIDAS uses well-designed relationships. In addition, the 
MIDAS has very few parameters, which works well when the number of data is insufficient 
[36]. In the following, we will only compare models using MIDAS embedded data. 
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Table 4.  Performance table for our smart aquaculture dataset. 

 
 
 

 
 

Model Embedding Number of mixture (K) 
2 3 4 5 

GP 
MIDAS 

0.2799 
3146.170 

UMAP 
0.29415 

3541.324 

MDN 
MIDAS 

0.2746 
3134.895 

0.29055 
2510.411 

0.27775 
3063.906 

0.27685 
2083.301 

UMAP 
0.30645 

4375.303 
0.32075 

6453.700 
0.36785 

6300.6219 
0.322 

6145.0931 

OMGP 
MIDAS 

0.278 
2338.572 

0.29385 
3003.035 

0.36485 
2563.207 

0.3794 
3542.594 

UMAP 
0.34195 

2670.375 
0.3867 

2712.878 
0.33005 

2545.094 
0.65225 
3792.56 

OMGP-SA 
MIDAS 

0.26515 
2342.421 

0.26855 
2545.400 

0.3922 
3193.065 

0.28685 
3287.255 

UMAP 
0.40125 

3170.205 
0.2769 

2338.575 
0.523855 
3193.706 

0.546 
3287.255 

 
We confirm that our assumptions for data, fish weight distribution’s multimodality, data 

association issues and approximating the prior Φ∗j by the average of near past Φij is validate 
through experiments. MDN and OMGP exhibit better MSLL values than GP when K=2, and 
OMGP-SA outperform GP in terms of MSLL when K=2, 3. This demonstrates that modeling 
fish weight as multimodal distributions is appropriate for understanding smart aquaculture data, 
rather than assuming unimodal distributions. In addition, OMGP-SA when K=2, 3 
outperforms MDN for all K. It suggests that considering the distribution of fish over time as a 
mixture of stochastic processes is a more effective approach for analyzing smart aquaculture 
data. All mixture models show the best MSLL values when K=2, indicating that two fish 
groups are enough for our smart aqua farm data. Additionally, the comparison between 
OMGP-SA and OMGP highlights the validity of our approximation method for the prior  Φ∗j. 
Specifically, when K=2, OMGP had a worse MSLL value than MDN, indicating the 
limitations of traditional OMGP's prediction and emphasizing the importance of setting up a 
proper prior distribution, Φ∗j. Considering both the model and the number of mixtures, the 
best model in terms of MSLL is OMGP-SA with K=2.  

 

First row: MSLL                   Best MSLL value 
Second row: MSE                  Second best MSLL 
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Fig. 5. Confidence interval plots of GP. 

               
Fig. 5 and 6 show how our data exhibits the characteristics of a probabilistic multimodal 

distribution and how each mixture distinguishes different groups of fish. Fig. 5 depicts the 
confidence intervals for GPs for each tank. The fish in each tank are plotted in different 
subfigures because they are not mixed, but we train the model with the entire data. The x-axis 
represents the number of days since 2021-08-01, one of days of sorting and grading, and the 
y-axis represents the fish weight. The train data was scatter-plotted in blue and the test data in 
red. The confidence interval is [μ − 2σ,μ + 2σ] where and are the posterior mean μ and σ2 
are the posterior mean and variance, respectively.   

Fig. 6 shows the confidence intervals of OMGP-SA for each number of mixtures, and 
each subplot has the same format as Fig. 5. Grading and sorting occur once, 87 days after 
2021-08-01. As illustrated in Fig. 5 and 6, GP requires a larger confidence interval than the 
proposed model does to cover entire data due to its unimodality. This is interpreted as a result 
of trying to represent the entire data with a single mixture, resulting in large confidence 
intervals. On the other hand, we can see that our model has a smaller confidence interval but 
a mean value that is slightly closer to the actual data. This feature helps our model represent 
the data more accurately, as the results in the Table 4 explain. As shown in Fig. 6, fish groups 
exhibit constantly changing patterns. Fish weight distribution follows a unimodal distribution 
at x=87, and then it diverges into various mixtures. We speculate that each fish group 
represents a distinct set of fish that diverges as fish grow. We numerically confirm that it is 
appropriate to divide the data into groups, but the interpretation of the groups remains an open 
question. When K=2 (the optimal number of clusters) each group has a distinct weight 
distribution with minimal overlap. So, we can say that the groups are divided based on 
differences in fish growth. However, for K=3, 4, and 5, the weight distributions of the fish in 
each group become less distinct over time and intersect with each other. For K=3, 4, and 5, it 
is possible that the model's interpretive power is weak, leading to incorrect results. 
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Fig. 6. Confidence interval plots of OMGP-SA for each number of mixtures, K. 

5. Conclusion 
This paper proposes a preprocessing and probabilistic fish growth model for smart 

aquaculture systems. Initially, we examine the characteristics of our dataset, which is a blend 
of IoT data and human-collected data. Four primary characteristics of the dataset present 
analytical challenges: mixed frequencies, varied farming methods, periodic missing data, and 
fragmented time series. 

To address these characteristics, we employ a statistical preprocessing method that 
addresses missing data and adjusts frequencies using MIDAS. We note that fish share common 
traits that shift as a group over time. We incorporate this phenomenon into the model using 
OMGP and name it 'data association.' However, OMGP has limitations in setting a proper prior 
distribution for data belonging to a mixture element during prediction. Therefore, we modify 
OMGP to better suit our problem by designing a prior distribution with the assumption that a 
fish's group does not change over time. Our model outperforms, in terms of both MSLL and 
MSE, those models that do not consider the specific characteristics of the dataset. We validate 
our model using eel data from an actual aquaculture system. 

Due to a lack of data, we estimate the parameters of the preprocessing model and 
probabilistic modeling separately. Should more data become available in the future, we can 
conduct a more comprehensive analysis of the fish growth model. Furthermore, this study 
exclusively utilizes tabular data. In the future, we aim to incorporate image and video data 
available through monitoring cameras, which could enhance data quality and reduce reliance 
on human-collected data. 
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6. Appendix 
 

 
 

Fig. A.1. Histogram and kernel density plot of fish weight of tank 2 for 2021/08 – 2021/10. 
 

 

 
 

Fig. A.2. Histogram and kernel density plot of fish weight of tank 3 for 2021/08 – 2021/10. 
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Fig. A.3. Histogram and kernel density plot of fish weight of tank 4 for 2021/08 – 2021/10. 
 
 

 
 

Fig. A.4. Histogram and kernel density plot of fish weight of tank 5 for 2021/08 – 2021/10. 
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